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ABSTRACT • The study aimed to determine the effect of impregnation with modified starch of recycled paper 
(Testliner) on elasticity constants of slender core cells and the influence on the elasticity constants and strength of 
honeycomb with facings made of thin particleboards. The experimental tests were carried out on beams subjected 
to three-point bending. It was shown that slender hexagonal cells significantly differentiate their elastic proper-
ties and elastic properties of honeycomb panels in the main directions of orthotropy. Impregnation of the Testliner 
paper with modified starch reduces the values of the modulus of elasticity of the cells by about 8.8 % and reduces 
the values of the modulus of elasticity of the honeycomb panels by at least 6.9 %. Analytical solutions that do not 
take into account the structural form of the core cannot be used to calculate the modulus of elasticity of sandwich 
panels with hexagonal core cells.
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SAŽETAK • Cilj predstavljenog istraživanja bio je utvrditi učinak impregnacije recikliranog papira (testliner 
papira) modificiranim škrobom na konstante elastičnosti uskih ćelija papirne jezgre i učinak na konstante elastič-
nosti papirnog saća obostrano obloženoga tankim pločama ivericama. Eksperimentalna su ispitivanja provedena 
na uzorcima podvrgnutima savijanju u tri točke. Pokazalo se da vitke heksagonalne ćelije u glavnim smjerovima 
ortotropije znatno diferenciraju svoja svojstva elastičnosti, kao i svojstva elastičnosti ploča s jezgrom od papir-
nog saća. Impregnacija testliner papira modificiranim škrobom smanjuje vrijednosti modula elastičnosti ćelija 
za otprilike 8,8 %, ali i vrijednosti modula elastičnosti ploča sa srednjicom od papirnog saća za najmanje 6,9 %. 
Analitička rješenja kojima se ne uzima u obzir strukturni oblik jezgre ne mogu se upotrijebiti za proračun modula 
elastičnosti tzv. sendvič-ploča, čija jezgra ima heksagonalne ćelije.

KLJUČNE RIJEČI: papirno saće; heksagonalne ćelije; ortotropija; impregnacija; elastična svojstva; čvrstoća
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1  INTRODUCTION
1.  UVOD

Kraft paper, which is commonly used in the pro-
duction of light wood-based honeycomb panels, is pro-
duced by chemical defibering with at least 80 % virgin 
fibers. It is widely used as a packaging material (Twede 
et al., 2015). Paper as such can be recycled up to six 
times, but it is assumed that the life cycle of cellulose 
fiber in Europe has an average of 3.5 times (Ghinea et 
al., 2017). As reported by European and global organi-
zations monitoring the pulp and paper industry, in 2018, 
more than half of the global paper production was made 
of recycled paper known as Testliner. For hundreds of 
years, the paper industry has been using various meth-
ods of protecting paper against moisture (sizing), includ-
ing impregnation. A side effect of impregnation may be 
a reduction in the paper strength, which was confirmed 
in the work of Pohl (2009). In recent years, efforts have 
been made to develop environmentally friendly sub-
stances that increase the hydrophobic properties of cel-
lulose fibers. These are vegetable proteins and starch 
(Lagus, 2019; Ren and Li, 2005). Starch is the second 
most used agent in the paper industry, right after clay 
fillers. The usual cellulose pulp supplement is within the 
range of 2 % – 4 % (Maurer, 2009; Zeng, 2013). Its pres-
ence increases the mechanical resistance of the paper to 
tearing, improves the quality of prints, and most of all 
increases the resistance to moisture by filling the pores 
in the cellulose fiber mesh. In 2009, modified starch ac-
counted for 66 % of the starch used for sizing (Zeng, 
2013; Słonina et al., 2022). 

Lightweight, wood-based honeycomb boards are 
of great use in the production of furniture (Librescu 
and Hause, 2000; Michanickl, 2006). However, a sig-
nificant limitation of the widespread use of honeycomb 
boards in the furniture industry is their low stiffness 
and strength, compared to classic wood materials, such 
as particleboard, MDF board or plywood. (Shalbafan 
et al., 2012; Smardzewski, 2013; Smardzewski and 
Jasińska, 2016; Khojasteh-Khosro et al., 2020). How-
ever, these boards are distinguished by an attractive 
quality factor (Peliński and Smardzewski, 2020; Beck-
ers et al., 2021). 

Scientific research of three-point bent sandwich 
panels consisting of a core with hexagonal cells con-
cerned the modeling of deflection of panels with regu-
lar hexagonal cells (Chen, 2011), facings damage, and 
core cell collapse (Steeves and Fleck, 2004; Crupi et 
al., 2012; Sun et al., 2017; Palomba et al., 2019; Hus-
sain et al., 2019; Wang et al., 2019; Ma et al., 2021), 
damage to the paper core cells (Chen et al., 2011; Chen 
and Yan, 2012; Hao et al., 2018). 

Research has also begun on protecting wood-
based cellular panels against the destructive effects of 

variable temperature and air humidity (Bekhta et al., 
2006; Ozarska and Harris, 2007; Nilsson et al., 2017; 
Słonina et al., 2022). 

On the other hand, the effect of the hydrophobic 
impregnation of paper on the orthotropic properties of 
slender hexagonal core cells and their influence on the 
mechanical properties of the cell plates was not inves-
tigated. Therefore, the study aimed to determine the 
effect of impregnation with modified starch of Testlin-
er paper on the elasticity constants of slender core cells 
and determine the influence of these changes on the 
elasticity constants and strength of honeycomb panels 
with facings made of thin particleboards.

2  MATERIALS AND METHODS
2.  MATERIJALI I METODE

2.1  Shape and properties of honeycomb 
cells

2.1. Oblik i svojstva ćelija papirnog saća

The method of modeling hexagonal cells has 
been presented in numerous scientific papers (Gibson, 
2005; Peliński et al., 2017; Słonina et al., 2020; Słonina 
et al., 2022). They describe in detail the method of se-
lecting the cell geometry and its production processes. 
For the purposes of this study, the shape of one slender 
cell was designed (Figure 1). The elongated, spindle-
shaped geometry was to ensure strong orthotropic 
properties of the cell and the core made of paper. Table 
1 lists the basic dimensions of the cell influencing its 
elastic properties.

The cells and cores of the honeycomb boards 
were made of paper Testliner-2 with a thickness of 0.15 
mm and basis weight of 123 g/m2 (Sam-Brew et al., 
2011; Słonina et al., 2022). Testliner-2 paper was pro-

Figure 1 Slender cell model
Slika 1. Model uskih ćelija

Table 1 Geometric characteristics of test cell, where  
(Figure 1)
Tablica 1. Geometrijska svojstva ispitivanih ćelija: (sl. 1.)

Sy, mm Lx, mm I, mm h, mm t, mm , °
13.33 46.48 13.0 12.0 0.15 60

r – relative density, Sy – width, Lx – length, l – free wall length, h – 
length of common wall, t – wall (paper) thickness,  – angle of wall 
r – relativna gustoća, Sy – širina, Lx – duljina, l – duljina slobodne 
stijenke, h – duljina kontaktne stijenke, t – debljina stijenke (papira), 
 – kut stijenke
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duced in the company HM Technology (HM Technol-
ogy, Brzozowo, Poland). For cell formation, non-im-
pregnated (PN) and impregnated (PS) papers were 
prepared with a 10 % aqueous solution of modified 
starch (patent number P.430486). The paper (Słonina et 
al., 2020) presents in detail the method of paper im-
pregnation, the method of forming cells, and obtaining 
cores. The elastic properties of the paper were deter-
mined in accordance with the standard (ISO 1924-2, 
2008) and are presented in Table 2. The elastic proper-
ties of thin particleboard (PB) with a thickness of 3 
mm, used to make the facings of the honeycomb 
boards, are also given (Egger, Rion-des-Landes, Franc-
ja). These properties were determined in accordance 
with the standard (ISO 13061-6, 2014). The uniaxial 
tensile characteristics of the papers and particleboard 
are shown in Figure 2 and 3.

Based on Figure 2 and the data in Table 2, it can 
be seen that the stiffness and strength of the paper in 
the machine direction (MD=x) is significantly higher 
compared to the properties in the cross-machine direc-
tion (CD=y). Material tests have also shown that im-
pregnation of the paper with starch slightly reduces the 

modulus of elasticity in the (x) direction but increases 
its value in the (y) direction and slightly increases the 
tear strength of the paper. Therefore, it was decided to 
form the cells in further studies in such a way to make 
their orthotropy direction (x) (Figure 1) consistent with 
the cross direction (y) of the paper. Figure 3 also shows 

Table 2 Physical and mechanical properties of materials used
Tablica 2. Fizička i mehanička svojstva upotrijebljenih materijala

Code
Oznaka

Thickness, mm
Debljina, mm MC, %

Density,  
kg/m³

Gustoća, 
kg/m³

Ei, MPa MOEi, MPa ij

x y x y xy yx

PN
Mine 0.15 5.72 686 5707 2188 46 16 0.411 0.147
SD 0.01 0.32 32 672 113 1.8 0.30 0.043 0.023

PS
Mine 0.16 7.05 730 5190 2642 49 20 0.308 0.109
SD 0.02 0.41 28 374 102 3.1 0.34 0.033 0.010

PB
Mine 2.77 6.76 942 4116 3445 14 10 0.161 0.129
SD 0.02 0.53 18 276 210 2.3 1.50 0.027 0.026

PN – paper not impregnated with starch, PS – starch-impregnated paper, PB – particleboard, (Ei – modulus of linear elasticity, MOEi – modulus 
of rupture, ij – Poissons ratio, i, j – appropriately x,y – orthotropy directions, SD – standard deviation) / PN – neimpregnirani papir, PS – papir 
impregniran škrobom, PB – ploča iverica (Ei – modul linearne elastičnosti, MOEi – modul loma, ij – Poissonov omjer, i, j – prikladnost, x,y 
– smjerovi ortotropije, SD – standardna devijacija)
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Figure 2 Relationships between force and displacement in uniaxial tensile test of non-impregnated (PN) and impregnated 
(PS) paper; the dotted line marks the smallest and largest force values recorded for each type of sample
Slika 2. Odnos između sile i pomaka u jednoosnom vlačnom ispitivanju neimpregniranoga (PN) i impregniranoga (PS) 
papira; isprekidana linija označava najmanju i najveću zabilježenu silu za svaku vrstu uzorka
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Figure 3 Relationships between force and displacement in 
uniaxial tensile test of particleboard (PB); the dotted line 
marks the smallest and largest force values recorded for 
each type of sample
Slika 3. Odnos između sile i pomaka u jednoosnom 
vlačnom ispitivanju ploče iverice; isprekidana linija 
označava najmanju i najveću zabilježenu silu za svaku vrstu 
uzorka
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that thin particleboards are characterized by strong or-
thotropy. Thus, it was decided that the direction of the 
orthotropy of the plate (x) should always coincide with 
the direction of the longer side of the cellular plate 
sample. 

The cell relative density ρ was calculated from 
the following Eq. (Peliński et al., 2017):

  (1)

Where: Fs and F* the surface of the substance and 
the surface of the cell, respectively,

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

Since it was assumed that hexagonal honeycomb 
cells are characterized by strong orthotropy resulting 
from their slender geometry, two longitudinal elasticity 
modules , , two Poisson’s coefficients , , 
were calculated for a single cell, and Kirchhoff’s mod-
ule ,

  (10)

  (11)

  (12)

  (13)

  (14)

Table 3 presents the calculation results of the 
elastic properties of the core cells. It shows that the 
relative density of cells is constant and equal to 0.0785. 
In addition, the cell shows strong orthotropy; therefore, 
it will significantly affect the elastic properties of the 
modeled honeycomb panels. The influence of the im-
pregnation with starch on Testliner paper on the elastic 
properties of the cells also seems to be significant. Im-
pregnation reduces the values of the linear elasticity 
modulus by the Kirchhoff modulus. However, it does 
not change the value of the Poisson’s coefficients, as 
these depend only on the cell geometry. With this in 
mind, samples of honeycomb panels with the longitu-
dinal and transverse arrangement of the core cells were 
prepared for further research.

2.2  Honeycomb manufacturing and testing
2.2.  Proizvodnja i ispitivanje ploče sa 

srednjicom od papirnog saća

On non-decorative particleboard surfaces, glue 
PVAc Woodmax FF12.47 class D2 delivered by Syn-
thos Adhesives (Oświęcim, Poland) was applied in the 
amount of approximately 110 g/m2. Then, a particle-
board frame with a thickness of 16.1 mm was placed 
along the edges of one of the facing, and an expanded 
paper core with a thickness of 16.3 mm was inserted 
inside it. Care was taken that the longitudinal axis of 
the cell (x) was consistent with or perpendicular to the 
axis (x) of the particleboard. The assembly was closed 
with another particleboard to form a panel with a hon-
eycomb core. The gluing process of the set took place 
in a hydraulic press Orma Macchine NPC/DIGIT 6/90 
25x13 (Bergamo, Italy) for 25 minutes at a pressure of 
0.7 MPa. For each type of impregnated and non-im-
pregnated paper, six 22 mm thick panels were made. 
The panels were seasoned in laboratory conditions un-
til a constant mass of samples was obtained, which 
proved that they maintained the hygroscopic equilibri-
um. After this time, the boards were cut into beams 
w=50 mm wide and 20 times their thickness plus 50 
mm long. The beam samples were splitted in such a 
way as to obtain the longitudinal and transverse ar-
rangement of the core cells (Fig. 4). For each type of 

Table 3 Physical and mechanical properties of non-impregnated and starch-impregnated cells
Tablica 3. Fizička i mehanička svojstva ćelija neimpregniranog papira i papira impregniranog škrobom

Code
Oznaka ρ , MPa , MPa

x y xy xy yx
N

0.0785
0.1255 0.0033 0.0129

6.1976 0.1614S 0.1141 0.0030 0.0118
– modulus of linear elasticity,  - Poisson’s ratio,  – Kirchhoff moduli, i, j – x, y, respectively - orthotropy directions) /  – modul line-

arne elastičnosti,  – Poissonov omjer,  – Kirchhoffovi moduli, i, j – x, y pravci ortotropije)
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core and impregnation, 10 samples were made, a total 
of 40 pieces.

The beams were subjected to a three-point bend-
ing (Fig. 4) according to the standard (EN 310, 1993) 
on a Zwick Z100 testing machine (Zwick GmbH, Ulm, 
Germany). During the tests, the value of the force was 
recorded with an accuracy of 2 N and the deflection of 
the beams in the direction of acting force with an ac-
curacy of 0.01 mm. Then, for the test samples, based 
on the measured values of the maximum forces Fmax  
(N), modulus of rupture MORp(x,y) (MPa) was calculat-
ed for each direction of orthotropy (x, y) from Eq. 15:

  (15)

Where: Fmax is the force at the fracture point (N), 
L’ = 20 h is the length of the support span (mm), h is 
the thickness of the beam (mm), w is the width of the 
beam (mm). On the other hand, the linear elasticity 
modulus was calculated based on the relationship of 
force and deflection in the linear range Ep(x,y) (MPa) for 
each direction of orthotropy (x, y) from Eq. 16:

  (16)

Where: f0.4Fmax  is the deflection of the beam in 
mm for a load equal to 0.4·Fmax, 0.1·Fmax (N),   
is the crosssection moment of inertia (mm4).

Bodig and Jayne (Bodig and Jayne, 1982) devel-
oped simplified equations for layered wood-based pan-
els consisting of three orthotropic layers with symmet-
ric facings. The equations developed by Bodig and 
Jayne may be used to calculate the stiffness of the 
sandwich panel if we assume each layer as a continu-
um. Of course, these equations are unable to account 
for cell geometry effect. Nevertheless (Chen and Yan, 
2012), we tried to compare our simulated results with 
the estimates from Eqs. 17, 18 and 19:

  (17)

  (18)

  (19)

Where:  – linear elastic modulus of the facing  
(PB), ,  – core elasticity modulus in x, y direction,

,  - Kirchhoff module of facing and core, tf, tc – 
facing thickness and core thickness. The data for the 
calculations are summarized in Tables 2 and 3. In the 
case of particleboards, their Kirchhoff modulus was 
calculated in accordance with (Bodig and Jayne, 1982) 
and is equal  =1774 MPa.

3  RESULTS AND DISCUSSION
3.  REZULTATI I RASPRAVA

Figure 5 shows the method of deformation of 
beams subjected to three-point bending, and Figure 6 
shows the relationship of force to deflection.

Figure 6 shows that the individual sample popu-
lations were characterized by high homogeneity, espe-
cially in terms of deflections corresponding to the lin-
ear elasticity of beams. Comparing the curves for the 
mean values, it can be seen that the maximum value of 

Figure 4 Honeycomb boards samples
Slika 4. Uzorci ploča sa srednjicom od papirnog saća

Figure 5 Method of deformation of beams subjected to 
three-point bending: a, b) non-impregnated paper; c, d) 
impregnated paper; a, c) orthotropy direction x; b, d) 
orthotropy direction y
Slika 5. Načini deformacije ispitnih uzoraka (greda) 
podvrgnutih savijanju u tri točke: a), b) obično legende idu 
ispod tablice ( i u engl. tekstu)neimpregnirani papir; c), d) 
impregnirani papir; a), c) smjer ortotropije x; b), d) smjer 
ortotropije y

h=
22

t f=
3

t c=
16

L’=440
L=490
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the force causing bending Fmax=211 N occurs for beams 
ENX (with non-impregnated cells and for the direction 
of orthotropy (x)). The impregnation of the paper with 
starch, for the identical arrangement of cells (ESX), 
causes the value of the maximum destructive force to 
decrease to 144 N. The values of average destructive 
forces for the direction of orthotropy (y) are in a similar 
proportion. The maximum value of the force causing 
bending of ENY beams (with non-impregnated cells 
and for the orthotropy direction (y)) is equal to Fmax=67 
N. The starch impregnation of the paper reduces the 
maximum destructive force to 61 N. It follows that the 
stiffness of the beams in the (y) direction is less sensi-
tive to the impregnation of the paper than in the (x) di-
rection. Table 4 shows, however, that the slender cell of 
the paper core has a significant influence on the ortho-
tropic properties of the honeycomb panel. The modu-
lus of elasticity in the (x) axis is greater than the modu-
lus of elasticity in the (y) axis by 61.5 % and 55.5 % for 
non-impregnated and impregnated cores, respectively. 
At the same time, the impact of impregnation of Test-
liner paper with modified starch on the values of these 
modules for selected directions of orthotropy of the 
boards was noticeable. For the (x) direction, the im-

pregnation of the paper caused a reduction in value  
FPxof 19.3 % and for direction (y) of 6.9 %. It is worth 
noting that this change was caused only by the change 
in the value of the linear elasticity modulus of the core 
cells from =0.125 MPa to 0.114 MPa, and from  

 =0.033 MPa to 0.030 MPa. In this case, the differ-
ences are 8.8 % and 9.1 %, respectively, in favor of 
cells not impregnated with starch. The analytical calcu-
lations made with the use of equations 17, 18, 19 do not 
show, however, such a significant influence of the lin-
ear elasticity modulus of the core on the modulus of 
elasticity of the cellular sheet (Table 4), which is ex-
plained by the equation referred to below for Eq. 17,

  (20)

Where, after substituting the appropriate numeri-
cal values, we get:

  (21)

It follows that the combined effect of  and tc on  
EPxis equal to 8.1 ·10–5, therefore negligibly small. 
Therefore, the solutions proposed by (Bodig and Jayne, 
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Figure 6 Dependence of force on a deflection for beams subjected to bending: ENX, ENY – beams with non-impregnated 
paper and cells oriented in x and y direction, ESX, ESY – beams with impregnated paper, and cells oriented in x and y 
direction; the dotted line marks the smallest and largest force values recorded for each type of sample
Slika 6. Ovisnost sile o pomaku za grede podvrgnute savijanju: ENX, ENY – grede od neimpregniranog papira s ćelijama 
orijentiranima u smjeru x i y, ESX, ESY – grede od impregniranog papira s ćelijama orijentiranima u smjeru x i y; isprekidana 
linija označava najmanju i najveću zabilježenu silu za svaku vrstu uzorka
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Impregnation of Testliner paper with modified 
starch reduces the values of the linear elasticity modu-
lus of the cells by about 8.8 %.

The slender core cells differentiate the elastic 
properties of the cell plates in the main directions of 
orthotropy. In the (x) axis, the modulus of elasticity is 
about 355 % greater than in the direction of the (y) 
axis.

Impregnation of Testliner paper with modified 
starch reduces the values of linear elasticity modulus of 
honeycomb panels by at least 6.9 %.

Analytical solutions that do not include the struc-
tural form of the core cannot be used to calculate the 
modulus of elasticity of sandwich panels with hexago-
nal core cells. 
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