Open Access Journal

Manuscript submission

Volume 69 (2018), issue 4
Title:

Influence of Nano-Silica (SiO2) Content on Mechanical Properties of Cement-Bonded Particleboard Manufactured from Lignocellulosic Materials

Research subject and fields:
Abstract:

The influence of Nano-SiO2 (NS) content and lignocellulosic material addition on hydration behaviour of cement paste was studied through measurement of hydration temperature, initial and final setting time of cement paste and compressive strength of hardened cement paste. Besides, the amount of NS, particle size of reed and bagasse as lignocellulosic materials and bagasse to reed particles weight ratio were selected as manufacturing variables for cement-bonded particleboard (CBPB) each at five levels. The relationships between independent parameters and output variables (modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB)) were modeled using response surface methodology (RSM) based on mathematical model equations (second-order multiple linear regression model) by computer simulation programming. The results indicated that cement pastes containing 3 wt.% Nano-SiO2 content mixed with milled reed or bagasse particles enhanced maximum hydration temperature; however, the time of reaching the main rate peak shortened. Besides, the increase of SiO2 replacement shortened the setting time. On the other hand, using reed particles, initial and final setting times of cement prolonged, while bagasse particles shortened initial and final setting times. Analysis of variance (ANOVA) was performed to determine the adequacy of the mathematical model and its respective variables. The interaction effect curves of the independent variables obtained from simulations showed a good agreement between the measured MOR, MOE and IB of CBPB and predicted values obtained by the developed models, and hence, the proposed concept was verified.

Publisher

Faculty of Forestry and Wood Technology
HRCAK
ORCID
DOI
CROSSREF

DRVNA INDUSTRIJA Scientific Journal of Wood Technology

ISSN 0012-6772 (Print) / ISSN 1847-1153 (Online)

Faculty of Forestry and Wood Technology University of Zagreb, Svetošimunska 25, 10000 Zagreb, Hrvatska - Croatia
Tel: +3851 2352 430, E-mail: drind@sumfak.hr
Editor-in-Chief: Prof. Ružica Beljo-Lučić, Ph.D. E-mail: editordi@sumfak.hr
Cookie settings